<- c("Seurat", "tidyverse")
libs suppressMessages(
suppressWarnings(sapply(libs, require, character.only =TRUE))
)
Seurat tidyverse
TRUE TRUE
Ricardo Martins-Ferreira
We used the subsetted Seurat objects of immune cells from each of the nineteen datasets integrated in the Human Microglia Atlas (HuMicA). The preprocessing and normalization pipelines were based on SCTransform normaliztion (see “Individual dataset processing.html” in this repository).
The integration and posterior analysis were performed with Seurat v5.
Each dataset consists of the immune cell populations of the respective datasets.
list <- list(MG_Mathys, MG_Grubman, MG_Lau, MG_Morabito, MG_Leng, MG_Zhou, MG_Pappalardo, MG_Thrupp,
MG_Jakel, MG_Schirmer, MG_Velmeshev, MG_Feleke, MG_Tran, MG_Franjic, MG_Yang, MG_Fullard,
MG_Mancuso, MG_Olah, MG_Smajic)
list <- lapply(X = list, FUN = SCTransform)
features <- SelectIntegrationFeatures(object.list = list, nfeatures = 3000)
list <- PrepSCTIntegration(object.list = list, anchor.features = features)
anchors <- FindIntegrationAnchors(object.list = list, normalization.method = "SCT",
anchor.features = features, dims=1:20)
combined.sct <- IntegrateData(anchorset = anchors, normalization.method = "SCT",dims=1:20,features.to.integrate =anchors@anchor.features,
preserve.order = TRUE)